Quantum Mechanics on a Torus *

نویسندگان

  • Ron S. Rubin
  • Andrzej Lesniewski
چکیده

We present here a canonical description for quantizing classical maps on a torus. We prove theorems analagous to classical theorems on mixing and ergodicity in terms of a quantum Koopman space L (A~, τ~) obtained as the completion of the algebra of observables A~ in the norm induced by the following inner product (A,B) = τ~ ( A†B ) , where τ~ is a linear functional on the algebra analogous to the classical “integral over phase space.” We also derive explicit formulas connecting this formulation to the θ-torus decomposition of Bargmann space introduced in ref.. ∗26 pages, 2 Figures

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Quantum Mechanics and Soliton Regularization of Noncommutative Field Theory

We construct an approximation to field theories on the noncommutative torus based on soliton projections and partial isometries which together form a matrix algebra of functions on the sum of two circles. The matrix quantum mechanics is applied to the perturbative dynamics of scalar field theory, to tachyon dynamics in string field theory, and to the Hamiltonian dynamics of noncommutative gauge...

متن کامل

Twelve Dimensions and the D2-Brane Tension

In this letter we study D particle quantum mechanics on a torus in the limit that one or more cycles of the torus have a zero length.

متن کامل

The Higher-dimensional Rudnick-kurlberg Conjecture Shamgar Gurevich and Ronny Hadani

In this paper we give a proof of the Hecke quantum unique ergodicity conjecture for the multidimensional Berry-Hannay model. A model of quantum mechanics on the 2n-dimensional torus. This result generalizes the proof of the Rudnick-Kurlberg Conjecture given in [GH3] for the 2-dimensional torus.

متن کامل

The Higher-dimensional Rudnick-kurlberg Conjecture Shamgar Gurevich and Ronny Hadani

In this paper we give a proof of the Hecke quantum unique ergodicity conjecture for the multidimensional Berry-Hannay model. A model of quantum mechanics on the 2n-dimensional torus. This result generalizes the proof of the Rudnick-Kurlberg Conjecture given in [GH3] for the 2-dimensional torus.

متن کامل

Crystal properties of eigenstates for quantum cat maps

Using the Bargmann–Husimi representation of quantum mechanics on a torus phase space, we study analytically eigenstates of quantized cat maps [9]. The linearity of these maps implies a close relationship between classically invariant sublattices on the one hand, and the patterns (or ‘constellations’) of Husimi zeros of certain quantum eigenstates on the other hand. For these states, the zero pa...

متن کامل

Quantization on a torus without position operators

We formulate quantum mechanics in the two-dimensional torus without using position operators. We define an algebra with only momentum operators and shift operators and construct an irreducible representation of the algebra. We show that it realizes quantum mechanics of a charged particle in a uniform magnetic field. We prove that any irreducible representation of the algebra is unitarily equiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998